Placement-induced effects on high tibial osteotomized construct - biomechanical tests and finite-element analyses
نویسندگان
چکیده
BACKGROUND High tibial osteotomy (HTO) with a medially opening wedge has been used to treat osteoarthritic knees. However, the osteotomized tibia becomes a highly unstable structure and necessitates the use of plate and screws to stabilize the medial opening and enhance bone healing. A T-shaped plate (e.g. TomoFix) with locking screws has been extensively used as a stabilizer of the HTO wedge. From the biomechanical viewpoint, however, the different plate sites and support bases of the HTO plate should affect the load-transferring path and wedge-stabilizing ability of the HTO construct. This study uses biomechanical tests and finite-element analyses to evaluate the placement- and base-induced effects of the HTO plates on construct performance. METHODS Test-grade synthetic tibiae are chosen as the standard specimens of the static tests. A medial wedge is created for each specimen and stabilized by three plate variations: hybrid use of T- and I-shaped plates (TIP), anteriorly placed TomoFix (APT), and medially placed TomoFix (MPT). There are five tests for each variation. The failure loads of the three constructs are measured and used as the load references of the fatigue finite-element analysis. The residual life after two hundred thousand cycles is predicted for all variations. RESULTS The testing results show no occurrence of implant back-out and breakage under all variations. However, the wedge fracture consistently occurs at the opening tip for the APT and MPT and the medially resected plateau for the TIP, respectively. The testing results reveal that both failure load and wedge stiffness of the TIP are the highest, followed by the MPT, while those of the APT are the least (P < 0.05). The fatigue analyses predict comparable values of residual life for the TIP and MPT and the highest value of damage accumulation for the APT. Both experimental and numerical tests show the biomechanical disadvantage of the APT than their counterparts. However, the TIP construct without locking screws shows the highest stress at the plate-screw interfaces. CONCLUSIONS This study demonstrates the significant effect of placement site and support base on the construct behaviors. The TIP provides a wider base for supporting the HTO wedge even without the use of locking screws, thus significantly enhancing construct stiffness and suppressing wedge fracture. Compared to the APT, the MPT shows performance more comparable to that of the TIP. If a single plate and a smaller incision are considered, the MPT is recommended as the better alternative for stabilizing the medial HTO wedge.
منابع مشابه
On the Displacement-Stress Continuous Finite Elements
For the analysis of composite media, three different compatible and mixed finite element formulations are presented which apriori enforce the continuity of stresses as well as displacements at the element interfaces. The formulations are applied for the analysis of hi-material interfaces in two problems often encountered in the field of orthopaedic biomechanics, that is the fixation analysis in...
متن کاملFinite Element Modeling and Experimental Study of the Spline Tube Forming
Metal forming processes, compared with machining ones, reduce production steps and increase manufacturing speed in addition to saving raw material. In this paper, forming process of column of a steering mechanism is investigated by finite element analyses and experimental tests; and optimum die design parameters are found. Forming process parameters including die opening angle, bearing length, ...
متن کاملOsteotomy Model Is Not Suitable To Provide Insight into Normal Bone Healing
Understanding of biological course of healing is essential for a therapeutic approach and the choice of an adequate animal model can be crucial for the experimental results. Methods: A rabbit tibial osteotomy model with subsequent intramedullary stabilization was performed. The healing progress of the osteotomy model was compared to a closed fracture model. Histological analyses, biomechanical ...
متن کاملFinite Element Modeling and Experimental Study of the Spline Tube Forming
Metal forming processes, compared with machining ones, reduce production steps and increase manufacturing speed in addition to saving raw material. In this paper, forming process of column of a steering mechanism is investigated by finite element analyses and experimental tests; and optimum die design parameters are found. Forming process parameters including die opening angle, bearing length, ...
متن کاملImpact of Tamper Shape on the Efficiency and Vibrations Induced During Dynamic Compaction of Dry Sands by 3D Finite Element Modeling
Dynamic compaction is a soil improvement method which has been widely used for the increase of bearing capacity through stress wave propagation during heavy tamping. The cost and time of project implementation can be effectively curtailed by developing a model that can be used in the design of dynamic compaction operations. The numerical models offered so far are mostly one or two-dimensional, ...
متن کامل